Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.764
1.
Hum Genomics ; 18(1): 46, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730490

BACKGROUND: Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS: 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION: We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.


DNA Copy Number Variations , Genetic Testing , High-Throughput Nucleotide Sequencing , Lysosomal Storage Diseases , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , India , DNA Copy Number Variations/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Female , Male , Molecular Probes/genetics
2.
Nat Commun ; 15(1): 3844, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714690

Multiple myeloma (MM) is a heterogeneous disease characterized by frequent MYC translocations. Sporadic MYC activation in the germinal center of genetically engineered Vk*MYC mice is sufficient to induce plasma cell tumors in which a variety of secondary mutations are spontaneously acquired and selected over time. Analysis of 119 Vk*MYC myeloma reveals recurrent copy number alterations, structural variations, chromothripsis, driver mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identify frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC. In summary, here we credential the Vk*MYC mouse as a unique resource to explore MM genomic evolution and describe a fully annotated collection of diverse and immortalized murine MM tumors.


Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Humans , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Transformation, Neoplastic/genetics , Mutation , Signal Transduction/genetics , Mice, Transgenic , NF-kappa B/metabolism , NF-kappa B/genetics , Mutagenesis, Insertional , DNA Copy Number Variations/genetics , Genomics/methods , Translocation, Genetic
3.
J Transl Med ; 22(1): 414, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693538

Primary testicular lymphoma (PTL) is a rare lymphoma predominantly occurring in the elderly male population. It is characterized by a limited response to treatment and a heightened tendency towards relapse. Histologically, approximately 90% of PTL cases are classified as diffuse large B-cell lymphomas (DLBCL). Genetic features of PTL were delineated in a limited scope within several independent studies. Some of the articles which analyzed the genetic characterization of DLBCL have incorporated PTL samples, but these have been constrained by small sample sizes. In addition, there have been an absence of independent molecular typing studies of PTL. This report summarizes the common mutational features, copy number variations (CNVs) and molecular typing of PTL patients, based on whole-exome sequencing (WES) conducted on a cohort of 25 PTL patients. Among them, HLA, CDKN2A and MYD88 had a high mutation frequency. In addition, we found two core mutational characteristics in PTL including mutation in genes linked to genomic instability (TP53 and CDKN2A) and mutation in immune-related genes (HLA, MYD88, CD79B). We performed molecular typing of 25 PTL patients into C1 subtype with predominantly TP53 mutations and C2 subtype with predominantly HLA mutations. Notably, mutations in the TP53 gene predicted a poor outcome in most types of lymphomas. However, the C1 subtype, dominated by TP53 mutations, had a better prognosis compared to the C2 subtype in PTL. C2 subtype exhibited a worse prognosis, aligning with our finding that the mechanism of immune escape in PTL was primarily the deletions of HLA rather than PD-L1/PD-L2 alterations, a contrast to other DLBCLs. Moreover, we calculated the tumor mutation burden (TMB) and identified that TMB can predict prognosis and recurrence rate in PTL. Our study underscores the significance of molecular typing in PTL based on mutational characteristics, which plays a crucial role in prognostication and guiding therapeutic strategies for patients.


DNA Copy Number Variations , Genomics , Mutation , Testicular Neoplasms , Humans , Male , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Testicular Neoplasms/classification , Mutation/genetics , DNA Copy Number Variations/genetics , Aged , Middle Aged , Lymphoma/genetics , Lymphoma/pathology , Lymphoma/classification , Exome Sequencing , Aged, 80 and over , Adult , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/classification
4.
Psychiatr Genet ; 34(3): 74-80, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690959

BACKGROUND: Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder. These variants have been identified in a group of children with neurodevelopmental disorders with microcephaly, arthrogryposis, and structural brain anomalies. SMPD4 encodes a sphingomyelinase that hydrolyzes sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes. MATERIALS AND METHODS: For the efficient prenatal diagnosis of rare and undiagnosed diseases, the parallel detection of copy number variants (CNVs) and single nucleotide variants using whole-exome analysis is required. A physical examination of the parents was performed. Karyotype and whole-exome analysis were performed for the fetus and the parents. RESULTS: A fetus with microcephaly and arthrogryposis; biallelic null variants (c.387-1G>A; Chr2[GRCh38]: g.130142742_130202459del) were detected by whole-exome sequencing (WES). We have reported for the first time the biallelic loss-of-function mutations in SMPD4 in patients born to unrelated parents in China. CONCLUSION: WES could replace chromosomal microarray analysis and copy number variation sequencing as a more cost-effective genetic test for detecting CNVs and diagnosing highly heterogeneous conditions.


DNA Copy Number Variations , Exome Sequencing , Microcephaly , Polymorphism, Single Nucleotide , Prenatal Diagnosis , Sphingomyelin Phosphodiesterase , Humans , DNA Copy Number Variations/genetics , Exome Sequencing/methods , Female , Prenatal Diagnosis/methods , Sphingomyelin Phosphodiesterase/genetics , Polymorphism, Single Nucleotide/genetics , Pregnancy , Microcephaly/genetics , Heterozygote , Arthrogryposis/genetics , Arthrogryposis/diagnosis , Male , Exome/genetics , Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis
5.
Brain Behav ; 14(4): e3437, 2024 Apr.
Article En | MEDLINE | ID: mdl-38616334

BACKGROUND: The 15q11-q13 region is a genetic locus with genes subject to genomic imprinting, significantly influencing neurodevelopment. Genomic imprinting is an epigenetic phenomenon that causes differential gene expression based on the parent of origin. In most diploid organisms, gene expression typically involves an equal contribution from both maternal and paternal alleles, shaping the phenotype. Nevertheless, in mammals, including humans, mice, and marsupials, the functional equivalence of parental alleles is not universally maintained. Notably, during male and female gametogenesis, parental alleles may undergo differential marking or imprinting, thereby modifying gene expression without altering the underlying DNA sequence. Neurodevelopmental disorders, such as Prader-Willi syndrome (PWS) (resulting from the absence of paternally expressed genes in this region), Angelman syndrome (AS) (associated with the absence of the maternally expressed UBE3A gene), and 15q11-q13 duplication syndrome (resulting from the two common forms of duplications-either an extra isodicentric 15 chromosome or an interstitial 15 duplication), are the outcomes of genetic variations in this imprinting region. METHODS: Conducted a genomic study to identify the frequency of pathogenic variants impacting the 15q11-q13 region in an ethnically homogenous population from Bangladesh. Screened all known disorders from the DECIPHER database and identified variant enrichment within this cohort. Using the Horizon analysis platform, performed enrichment analysis, requiring at least >60% overlap between a copy number variation and a disorder breakpoint. Deep clinical phenotyping was carried out through multiple examination sessions to evaluate a range of clinical symptoms. RESULTS: This study included eight individuals with clinically suspected PWS/AS, all previously confirmed through chromosomal microarray analysis, which revealed chromosomal breakpoints within the 15q11-q13 region. Among this cohort, six cases (75%) exhibited variable lengths of deletions, whereas two cases (25%) showed duplications. These included one type 2 duplication, one larger atypical duplication, one shorter type 2 deletion, one larger type 1 deletion, and four cases with atypical deletions. Furthermore, thorough clinical assessments led to the diagnosis of four PWS patients, two AS patients, and two individuals with 15q11-q13 duplication syndrome. CONCLUSION: Our deep phenotypic observations identified a spectrum of clinical features that overlap and are unique to PWS, AS, and Dup15q syndromes. Our findings establish genotype-phenotype correlation for patients impacted by variable structural variations within the 15q11-q13 region.


Angelman Syndrome , Prader-Willi Syndrome , Humans , Female , Male , Animals , Mice , DNA Copy Number Variations/genetics , Alleles , Angelman Syndrome/genetics , Prader-Willi Syndrome/genetics , Bangladesh , Mammals
6.
Mol Biol Rep ; 51(1): 577, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664339

BACKGROUND: Chromosomal microarray analysis is an essential tool for copy number variants detection in patients with unexplained developmental delay/intellectual disability, autism spectrum disorders, and multiple congenital anomalies. The study aims to determine the clinical significance of chromosomal microarray analysis in this patient group. Another crucial aspect is the evaluation of copy number variants detected in terms of the diagnosis of patients. METHODS AND RESULTS: A Chromosomal microarray analysis was was conducted on a total of 1227 patients and phenotype-associated etiological diagnosis was established in 135 patients. Phenotype-associated copy number variants were detected in 11% of patients. Among these, 77 patients 77 (57%, 77/135) were diagnosed with well-recognized genetic syndromes and phenotype-associated copy number variants were found in 58 patients (42.9%, 58/135). The study was designed to collect data of patients in Kocaeli Derince Training and Research Hospital retrospectively. In our study, we examined 135 cases with clinically significant copy number variability among all patients. CONCLUSIONS: In this study, chromosomal microarray analysis revealed pathogenic de novo copy number variants with new clinical features. Chromosomal microarray analysis in the Turkish population has been reported in the largest patient cohort to date.


Abnormalities, Multiple , Autism Spectrum Disorder , DNA Copy Number Variations , Developmental Disabilities , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/diagnosis , Turkey/epidemiology , DNA Copy Number Variations/genetics , Female , Male , Child , Child, Preschool , Developmental Disabilities/genetics , Developmental Disabilities/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Adolescent , Phenotype , Infant , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Chromosome Aberrations , Microarray Analysis/methods , Retrospective Studies , Adult
7.
Sci Rep ; 14(1): 9230, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649688

With its high rate of consanguineous marriages and diverse ethnic population, little is currently understood about the genetic architecture of autism spectrum disorder (ASD) in Pakistan. Pakistan has a highly ethnically diverse population, yet with a high proportion of endogamous marriages, and is therefore anticipated to be enriched for biallelic disease-relate variants. Here, we attempt to determine the underlying genetic abnormalities causing ASD in thirty-six small simplex or multiplex families from Pakistan. Microarray genotyping followed by homozygosity mapping, copy number variation analysis, and whole exome sequencing were used to identify candidate. Given the high levels of consanguineous marriages among these families, autosomal recessively inherited variants were prioritized, however de novo/dominant and X-linked variants were also identified. The selected variants were validated using Sanger sequencing. Here we report the identification of sixteen rare or novel coding variants in fifteen genes (ARAP1, CDKL5, CSMD2, EFCAB12, EIF3H, GML, NEDD4, PDZD4, POLR3G, SLC35A2, TMEM214, TMEM232, TRANK1, TTC19, and ZNF292) in affected members in eight of the families, including ten homozygous variants in four families (nine missense, one loss of function). Three heterozygous de novo mutations were also identified (in ARAP1, CSMD2, and NEDD4), and variants in known X-linked neurodevelopmental disorder genes CDKL5 and SLC35A2. The current study offers information on the genetic variability associated with ASD in Pakistan, and demonstrates a marked enrichment for biallelic variants over that reported in outbreeding populations. This information will be useful for improving approaches for studying ASD in populations where endogamy is commonly practiced.


Autism Spectrum Disorder , Exome Sequencing , Pedigree , Humans , Autism Spectrum Disorder/genetics , Pakistan , Male , Female , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Child , Alleles , Consanguinity , Child, Preschool , Mutation , Homozygote
8.
Mol Ecol ; 33(9): e17339, 2024 May.
Article En | MEDLINE | ID: mdl-38556927

Copy number variation is a common contributor to phenotypic diversity, yet its involvement in ecological adaptation is not easily discerned. Instances of parallelly evolving populations of the same species in a similar environment marked by strong selective pressures present opportunities to study the role of copy number variants (CNVs) in adaptation. By identifying CNVs that repeatedly occur in multiple populations of the derived ecotype and are not (or are rarely) present in the populations of the ancestral ecotype, the association of such CNVs with adaptation to the novel environment can be inferred. We used this paradigm to identify CNVs associated with recurrent adaptation of the Mexican tetra (Astyanax mexicanus) to cave environment. Using a read-depth approach, we detected CNVs from previously re-sequenced genomes of 44 individuals belonging to two ancestral surfaces and three derived cave populations. We identified 102 genes and 292 genomic regions that repeatedly diverge in copy number between the two ecotypes and occupy 0.8% of the reference genome. Functional analysis revealed their association with processes previously recognized to be relevant for adaptation, such as vision, immunity, oxygen consumption, metabolism, and neural function and we propose that these variants have been selected for in the cave or surface waters. The majority of the ecotype-divergent CNVs are multiallelic and display copy number increases in cavefish compared to surface fish. Our findings suggest that multiallelic CNVs - including gene duplications - and divergence in copy number provide a fast route to produce novel phenotypes associated with adaptation to subterranean life.


Caves , Characidae , DNA Copy Number Variations , DNA Copy Number Variations/genetics , Animals , Characidae/genetics , Genetics, Population , Adaptation, Physiological/genetics , Ecotype , Mexico
9.
Sci Rep ; 14(1): 7694, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565889

The proteome holds great potential as an intermediate layer between the genome and phenome. Previous protein quantitative trait locus studies have focused mainly on describing the effects of common genetic variations on the proteome. Here, we assessed the impact of the common and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins measured in up to 500 individuals. We identified 184 cis and 94 trans signals for 157 protein traits, which were further fine-mapped to credible sets for 101 cis and 87 trans signals for 151 proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 cis and 14 trans associations. CNVs were associated with the levels of 11 proteins (7 cis and 5 trans), examples including a 3q12.1 deletion acting as a hub for multiple trans associations; and a CNV overlapping NAIP, a sensor component of the NAIP-NLRC4 inflammasome which is affecting pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a comprehensive resource of genetic variation affecting the plasma protein levels and provides the interpretation of identified effects.


Genome-Wide Association Study , Proteome , Humans , Proteome/genetics , Estonia , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Blood Proteins/genetics , DNA Copy Number Variations/genetics
10.
BMC Res Notes ; 17(1): 120, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38679744

OBJECTIVE: Breast cancer is the leading cause of cancer incidence and mortality among Indonesian women. A comprehensive investigation is required to enhance the early detection of this disease. Mitochondrial DNA copy number (mtDNA-CN) and relative telomere length (RTL) have been proposed as potential biomarkers for several cancer risks, as they are linked through oxidative stress mechanisms. We conducted a case-control study to examine peripheral blood mtDNA-CN and RTL patterns in Indonesian breast cancer patients (n = 175) and healthy individuals (n = 181). The relative ratios of mtDNA-CN and RTL were determined using quantitative real-time PCR (qPCR). RESULTS: Median values of mtDNA-CN and RTL were 1.62 and 0.70 in healthy subjects and 1.79 and 0.73 in breast cancer patients, respectively. We found a positive association between peripheral blood mtDNA-CN and RTL (p < 0.001). In under 48 years old breast cancer patients, higher peripheral blood mtDNA-CN (mtDNA-CN ≥ 1.73 (median), p = 0.009) and RTL (continuous variable, p = 0.010) were observed, compared to the corresponding healthy subjects. We also found a significantly higher 'High-High' pattern of mtDNA-CN and RTL in breast cancer patients under 48 years old (p = 0.011). Our findings suggest that peripheral blood mtDNA-CN and RTL could serve as additional minimally invasive biomarkers for breast cancer risk evaluation.


Breast Neoplasms , DNA Copy Number Variations , DNA, Mitochondrial , Telomere , Humans , Breast Neoplasms/genetics , Breast Neoplasms/blood , Female , DNA, Mitochondrial/blood , DNA, Mitochondrial/genetics , Indonesia , Middle Aged , Case-Control Studies , Adult , DNA Copy Number Variations/genetics , Telomere/genetics , Telomere Homeostasis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Aged
11.
Genes (Basel) ; 15(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38674362

Neurodevelopmental disorders are a group of complex multifactorial disorders characterized by cognitive impairment, communication deficits, abnormal behaviour, and/or motor skills resulting from abnormal neural development. Copy number variants (CNVs) are genetic alterations often associated with neurodevelopmental disorders. We evaluated the diagnostic efficacy of the array-comparative genomic hybridization (a-CGH) method and its relevance as a routine diagnostic test in patients with neurodevelopmental disorders for the identification of the molecular alterations underlying or contributing to the clinical manifestations. In the present study, we analysed 1800 subjects with neurodevelopmental disorders using a CGH microarray. We identified 208 (7%) pathogenetic CNVs, 2202 (78%) variants of uncertain significance (VOUS), and 504 (18%) benign CNVs in the 1800 patients analysed. Some alterations contain genes potentially related to neurodevelopmental disorders including CHRNA7, ANKS1B, ANKRD11, RBFOX1, ASTN2, GABRG3, SHANK2, KIF1A SETBP1, SNTG2, CTNNA2, TOP3B, CNTN4, CNTN5, and CNTN6. The identification of interesting significant genes related to neurological disorders with a-CGH is therefore an essential step in the diagnostic procedure, allowing a better understanding of both the pathophysiology of these disorders and the mechanisms underlying their clinical manifestations.


Comparative Genomic Hybridization , DNA Copy Number Variations , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , DNA Copy Number Variations/genetics , Female , Male , Italy , Child , Adolescent , Child, Preschool
12.
Genes (Basel) ; 15(4)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38674405

The sheer number of gene variants and the extent of the observed clinical and molecular heterogeneity recorded in neuropsychiatric disorders (NPDs) could be due to the magnified downstream effects initiated by a smaller group of genomic higher-order alterations in response to endogenous or environmental stress. Chromosomal common fragile sites (CFS) are functionally linked with microRNAs, gene copy number variants (CNVs), sub-microscopic deletions and duplications of DNA, rare single-nucleotide variants (SNVs/SNPs), and small insertions/deletions (indels), as well as chromosomal translocations, gene duplications, altered methylation, microRNA and L1 transposon activity, and 3-D chromosomal topology characteristics. These genomic structural features have been linked with various NPDs in mostly isolated reports and have usually only been viewed as areas harboring potential candidate genes of interest. The suggestion to use a higher level entry point (the 'fragilome' and associated features) activated by a central mechanism ('stress') for studying NPD genetics has the potential to unify the existing vast number of different observations in this field. This approach may explain the continuum of gene findings distributed between affected and unaffected individuals, the clustering of NPD phenotypes and overlapping comorbidities, the extensive clinical and molecular heterogeneity, and the association with certain other medical disorders.


DNA Copy Number Variations , Mental Disorders , Phenotype , Humans , Mental Disorders/genetics , DNA Copy Number Variations/genetics , Genome, Human , Chromosome Fragile Sites/genetics
13.
Sci Rep ; 14(1): 8135, 2024 04 07.
Article En | MEDLINE | ID: mdl-38584220

Aneuploidy is a hallmark of cancers, but the role of aneuploidy-related genes in lung adenocarcinoma (LUAD) and their prognostic value remain elusive. Gene expression and copy number variation (CNV) data were enrolled from TCGA and GEO database. Consistency clustering analysis was performed for molecular cluster. Tumor microenvironment was assessed by the xCell and ESTIMATE algorithm. Limma package was used for selecting differentially expressed genes (DEGs). LASSO and stepwise multivariate Cox regression analysis were used to establish an aneuploidy-related riskscore (ARS) signature. GDSC database was conducted to predict drug sensitivity. A nomogram was designed by rms R package. TCGA-LUAD patients were stratified into 3 clusters based on CNV data. The C1 cluster displayed the optimal survival advantage and highest inflammatory infiltration. Based on integrated intersecting DEGs, we constructed a 6-gene ARS model, which showed effective prediction for patient's survival. Drug sensitivity test predicted possible sensitive drugs in two risk groups. Additionally, the nomogram exhibited great predictive clinical treatment benefits. We established a 6-gene aneuploidy-related signature that could effectively predict the survival and therapy for LUAD patients. Additionally, the ARS model and nomogram could offer guidance for the preoperative estimation and postoperative therapy of LUAD.


Adenocarcinoma of Lung , Lung Neoplasms , Humans , DNA Copy Number Variations/genetics , Adenocarcinoma of Lung/genetics , Algorithms , Aneuploidy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Tumor Microenvironment
14.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Article En | MEDLINE | ID: mdl-38565148

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


DNA Copy Number Variations , Exome Sequencing , Exome , Rare Diseases , Humans , DNA Copy Number Variations/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Exome/genetics , Male , Female , Cohort Studies , Genetic Testing/methods
15.
Database (Oxford) ; 20242024 Apr 30.
Article En | MEDLINE | ID: mdl-38687868

Cancer cell lines are an important component in biological and medical research, enabling studies of cellular mechanisms as well as the development and testing of pharmaceuticals. Genomic alterations in cancer cell lines are widely studied as models for oncogenetic events and are represented in a wide range of primary resources. We have created a comprehensive, curated knowledge resource-cancercelllines.org-with the aim to enable easy access to genomic profiling data in cancer cell lines, curated from a variety of resources and integrating both copy number and single nucleotide variants data. We have gathered over 5600 copy number profiles as well as single nucleotide variant annotations for 16 000 cell lines and provide these data with mappings to the GRCh38 reference genome. Both genomic variations and associated curated metadata can be queried through the GA4GH Beacon v2 Application Programming Interface (API) and a graphical user interface with extensive data retrieval enabled using GA4GH data schemas under a permissive licensing scheme. Database URL: https://cancercelllines.org.


Databases, Genetic , Genomics , Neoplasms , Humans , Cell Line, Tumor , Neoplasms/genetics , Genomics/methods , DNA Copy Number Variations/genetics , User-Computer Interface , Polymorphism, Single Nucleotide
16.
J Clin Lab Anal ; 38(5): e24998, 2024 Mar.
Article En | MEDLINE | ID: mdl-38444303

BACKGROUND: Lipoprotein(a) [Lp(a)] level variability, related to atherothrombotic risk increase, is mainly attributed to LPA gene, encoding apolipoprotein(a), with kringle IV type 2 (KIV2) copy number variation (CNV) acting as the primary genetic determinant. Genetic characterization of Lp(a) is in continuous growth; nevertheless, the peculiar structural characteristics of this variant constitute a significant challenge to the development of effective detection methods. The aim of the study was to compare quantitative real-time PCR (qPCR) and digital droplet PCR (ddPCR) in the evaluation of KIV2 repeat polymorphism. METHODS: We analysed 100 subjects tested for cardiovascular risk in which Lp(a) plasma levels were assessed. RESULTS: Correlation analysis between CNV values obtained with the two methods was slightly significant (R = 0.413, p = 0.00002), because of the wider data dispersion in qPCR compared with ddPCR. Internal controls C1, C2 and C3 measurements throughout different experimental sessions revealed the superior stability of ddPCR, which was supported by a reduced intra/inter-assay coefficient of variation determined in this method compared to qPCR. A significant inverse correlation between Lp(a) levels and CNV values was confirmed for both techniques, but it was higher when evaluated by ddPCR than qPCR (R = -0.393, p = 0.000053 vs R = -0.220, p = 0.028, respectively). When dividing subjects into two groups according to 500 mg/L Lp(a) cut-off value, a significantly lower number of KIV2 repeats emerged among subjects with greater Lp(a) levels, with stronger evidence in ddPCR than in qPCR (p = 0.000013 and p = 0.001, respectively). CONCLUSIONS: Data obtained support a better performance of ddPCR in the evaluation of KIV2 repeat polymorphism.


DNA Copy Number Variations , Kringles , Humans , Kringles/genetics , DNA Copy Number Variations/genetics , Lipoprotein(a)/genetics , Polymorphism, Genetic , Real-Time Polymerase Chain Reaction/methods
17.
Nat Genet ; 56(4): 569-578, 2024 Apr.
Article En | MEDLINE | ID: mdl-38548989

Copy number variants (CNVs) are among the largest genetic variants, yet CNVs have not been effectively ascertained in most genetic association studies. Here we ascertained protein-altering CNVs from UK Biobank whole-exome sequencing data (n = 468,570) using haplotype-informed methods capable of detecting subexonic CNVs and variation within segmental duplications. Incorporating CNVs into analyses of rare variants predicted to cause gene loss of function (LOF) identified 100 associations of predicted LOF variants with 41 quantitative traits. A low-frequency partial deletion of RGL3 exon 6 conferred one of the strongest protective effects of gene LOF on hypertension risk (odds ratio = 0.86 (0.82-0.90)). Protein-coding variation in rapidly evolving gene families within segmental duplications-previously invisible to most analysis methods-generated some of the human genome's largest contributions to variation in type 2 diabetes risk, chronotype and blood cell traits. These results illustrate the potential for new genetic insights from genomic variation that has escaped large-scale analysis to date.


DNA Copy Number Variations , Diabetes Mellitus, Type 2 , Humans , DNA Copy Number Variations/genetics , Diabetes Mellitus, Type 2/genetics , Phenotype , Genetic Association Studies , Exons
18.
Neuropsychopharmacology ; 49(6): 1024-1032, 2024 May.
Article En | MEDLINE | ID: mdl-38431758

The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.


DNA Copy Number Variations , DiGeorge Syndrome , Gene Dosage , Magnetic Resonance Imaging , Humans , Female , Male , DNA Copy Number Variations/genetics , Adult , Adolescent , Child , Young Adult , Middle Aged , Child, Preschool , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , DiGeorge Syndrome/diagnostic imaging , Longitudinal Studies , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/growth & development , Brain/diagnostic imaging , Brain/pathology , Brain/growth & development , Amygdala/diagnostic imaging , Amygdala/pathology , Thalamus/diagnostic imaging , Thalamus/growth & development , Thalamus/pathology , Organ Size
19.
Genes (Basel) ; 15(3)2024 Mar 16.
Article En | MEDLINE | ID: mdl-38540426

Mitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE). In contrast, mitochondrial membrane potential (MMP) was higher in TE than ICM. Culture in ambient oxygen (20% O2) altered both aspects of mitochondrial function: the mtDNA copy number was upregulated in ICM, while MMP was diminished in TE. Embryos cultured in 20% O2 also exhibited delayed development kinetics, impaired implantation, and reduced mtDNA levels in E18 fetal liver. A model of oocyte mitochondrial stress using rotenone showed only a modest effect on on-time development and did not alter the mtDNA copy number in ICM; however, following embryo transfer, mtDNA was higher in the fetal heart. Lastly, endogenous mitochondrial dysfunction, induced by maternal age and obesity, altered the blastocyst mtDNA copy number, but not within the ICM. These results demonstrate that mitochondrial activity and mtDNA content exhibit cell-specific changes and are differentially responsive to diverse types of oxidative stress during pre-implantation embryogenesis.


DNA Copy Number Variations , DNA, Mitochondrial , Animals , Mice , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA Copy Number Variations/genetics , Membrane Potentials , Mitochondria/metabolism , Oxidative Stress/genetics , Embryonic Development/genetics , Oxygen/metabolism
20.
Medicina (Kaunas) ; 60(3)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38541145

Background and Objectives: Respiratory distress syndrome (RDS) in preterm infants commonly occurs due to the immaturity-related deficiency of pulmonary surfactant. Beyond prematurity, various environmental and genetic factors can influence the onset and progression of RDS. This study aimed to analyze three single-nucleotide polymorphisms (SNPs) of the ABCA3 gene to assess the ABCA3 gene as a candidate gene for susceptibility to RDS and overall survival in newborns and to evaluate the utility of MLPA in RDS neonatal patients. Materials and Methods: Three SNPs were chosen and genotyped in a cohort of 304 newborns. Data analysis and statistical tests were employed to examine allele frequencies, haplotypes, and measures of pairwise linkage disequilibrium. Results: There was no observed haplotype association with SNPs rs13332514 (c.1059G>A) and rs170447 (c.1741+33T>C) among newborns, both with and without RDS (p > 0.05). The minor C allele frequency of the ABCA3 rs323043 (c.1755G>C) SNP showed a significant increase in preterm infants with RDS. MLPA results indicated that the predominant findings were normal, revealing no CNVs in the genes ABCA3 and SFTPC that were investigated in our patients. Conclusions: The presence of the variant C allele in the rs323043 (c.1755G>C) SNP may be a risk factor for RDS in premature newborns.


Infant, Premature , Respiratory Distress Syndrome, Newborn , Infant , Infant, Newborn , Humans , Polymorphism, Single Nucleotide/genetics , Pilot Projects , DNA Copy Number Variations/genetics , Respiratory Distress Syndrome, Newborn/genetics , ATP-Binding Cassette Transporters/genetics
...